Convex Optimization of Graph Laplacian Eigenvalues

نویسندگان

  • Stephen Boyd
  • Arpita Ghosh
  • Seung-Jean Kim
  • Sanjay Lall
  • Pablo Parrilo
  • Amin Saberi
  • Jun Sun
چکیده

We consider the problem of choosing the edge weights of an undirected graph so as to maximize or minimize some function of the eigenvalues of the associated Laplacian matrix, subject to some constraints on the weights, such as nonnegativity, or a given total value. In many interesting cases this problem is convex, i.e., it involves minimizing a convex function (or maximizing a concave function) over a convex set. This allows us to give simple necessary and sufficient optimality conditions, derive interesting dual problems, find analytical solutions in some cases, and efficiently compute numerical solutions in all cases. In this overview we briefly describe some more specific cases of this general problem, which have been addressed in a series of recent papers. • Fastest mixing Markov chain. Find edge transition probabilities that give the fastest mixing (symmetric, discrete-time) Markov chain on the graph. • Fastest mixing Markov process. Find the edge transition rates that give the fastest mixing (symmetric, continuous-time) Markov process on the graph. • Absolute algebraic connectivity. Find edge weights that maximize the algebraic connectivity of the graph (i.e., the smallest positive eigenvalue of its Laplacian matrix). The optimal value is called the absolute algebraic connectivity by Fielder. • Minimum total effective resistance. Find edge weights that minimize the total effective resistance of the graph. This is same as minimizing the average commute time from any node to any other, in the associated Markov chain. • Fastest linear averaging. Find weights in a distributed averaging network that yield fastest convergence. • Least steady-state mean-square deviation. Find weights in a distributed averaging network, driven by random noise, that minimizes the steady-state mean-square deviation of the node values. Mathematics Subject Classification (2000). Primary 05C35; Secondary 90C25.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some remarks on the sum of the inverse values of the normalized signless Laplacian eigenvalues of graphs

Let G=(V,E), $V={v_1,v_2,ldots,v_n}$, be a simple connected graph with $%n$ vertices, $m$ edges and a sequence of vertex degrees $d_1geqd_2geqcdotsgeq d_n>0$, $d_i=d(v_i)$. Let ${A}=(a_{ij})_{ntimes n}$ and ${%D}=mathrm{diag }(d_1,d_2,ldots , d_n)$ be the adjacency and the diagonaldegree matrix of $G$, respectively. Denote by ${mathcal{L}^+}(G)={D}^{-1/2}(D+A) {D}^{-1/2}$ the normalized signles...

متن کامل

On net-Laplacian Energy of Signed Graphs

A signed graph is a graph where the edges are assigned either positive ornegative signs. Net degree of a signed graph is the dierence between the number ofpositive and negative edges incident with a vertex. It is said to be net-regular if all itsvertices have the same net-degree. Laplacian energy of a signed graph is defined asε(L(Σ)) =|γ_1-(2m)/n|+...+|γ_n-(2m)/n| where γ_1,...,γ_n are the ei...

متن کامل

Distributed Estimation of Graph Laplacian Eigenvalues by the Alternating Direction of Multipliers Method

This paper presents a new method for estimating the eigenvalues of the Laplacian matrix associated with the graph describing the network topology of a multi-agent system. Given an approximate value of the average of the initial condition of the network state and some intermediate values of the network state when performing a Laplacian-based average consensus, the estimation of the Laplacian eig...

متن کامل

Laplacian Energy of a Fuzzy Graph

A concept related to the spectrum of a graph is that of energy. The energy E(G) of a graph G is equal to the sum of the absolute values of the eigenvalues of the adjacency matrix of G . The Laplacian energy of a graph G is equal to the sum of distances of the Laplacian eigenvalues of G and the average degree d(G) of G. In this paper we introduce the concept of Laplacian energy of fuzzy graphs. ...

متن کامل

Laplacian Sum-Eccentricity Energy of a Graph

We introduce the Laplacian sum-eccentricity matrix LS_e} of a graph G, and its Laplacian sum-eccentricity energy LS_eE=sum_{i=1}^n |eta_i|, where eta_i=zeta_i-frac{2m}{n} and where zeta_1,zeta_2,ldots,zeta_n are the eigenvalues of LS_e}. Upper bounds for LS_eE are obtained. A graph is said to be twinenergetic if sum_{i=1}^n |eta_i|=sum_{i=1}^n |zeta_i|. Conditions ...

متن کامل

On Eccentricity Version of Laplacian Energy of a Graph

The energy of a graph G is equal to the sum of absolute values of the eigenvalues of the adjacency matrix of G, whereas the Laplacian energy of a graph G is equal to the sum of the absolute value of the difference between the eigenvalues of the Laplacian matrix of G and the average degree of the vertices of G. Motivated by the work from Sharafdini an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006